
INTEGRATION OF AN INTERNAL OPTIMIZATION
MODULE WITHIN ENERGYPLUS

G. Zhou1, P. Ihm1, M. Krarti1, S. Liu2 and G.P. Henze2

1Civil, Environmental, and Architectural Engineering, University of Colorado
2Architectural Engineering, University of Nebraska-Lincoln

ABSTRACT
An optimization module is developed and incorporated
within EnergyPlus. As an application of the
optimization module, improved controls are determined
for building passive thermal energy storage inventory.
The paper describes the implementation of the
optimization module within EnergyPlus. Moreover, the
paper presents results of a comparative analysis to
assess the performance of various optimization
algorithms evaluated as part of the implementation of
the internal optimization module within EnergyPlus.
Parametric analyses are carried out to evaluate the
effectiveness of the optimization module integrated
with EnergyPlus in harnessing the building thermal
mass to reduce either energy use or peak-demand
associated with cooling a prototypical office building
under various operating conditions. Selected results of
the parametric analyses are presented in this paper. In
particular, the performance of the internal optimization
module is compared against that of GenOpt, an external
optimization system. The study reveals that the Nelder-
Mead simplex method provides an appropriate
compromise between computational efficiency,
robustness, and accuracy of the optimal solution.

INTRODUCTION
EnergyPlus is a new generation of building energy
simulation software developed by the U.S. Department
of Energy (DOE, 2002). The first version 1.0.0 was
released in April 2001 and the latest version 1.0.3 was
released in November 2002. The next major release is
scheduled to be released March 2003.
EnergyPlus is built on popular features and capabilities
of both BLAST and DOE-2 but also includes several
innovative simulation capabilities such as flexible sub-
hourly time steps, modular HVAC systems, multi-zone
airflow, thermal comfort, and photovoltaic systems.
EnergyPlus is expected to be a valuable tool to
simulate building energy use and study control

strategies of building mechanical systems to reduce
both building energy consumption and operating costs.
Like other whole-building simulation programs,
EnergyPlus simulates building energy flows based on
an input file containing a detailed description of
building construction, HVAC systems and their
controls. Typically, the user defines building operation
and control strategies based on experience or existing
operating schemes. Often, these user-defined controls
are ad hoc and hence do not provide optimal operating
strategies, resulting in higher than necessary energy use
and/or energy cost. To broaden the applications of
EnergyPlus, an internal optimization module is
developed and integrated so that EnergyPlus can be
used to find an optimal control strategy for operating
HVAC systems.
In particular, this paper describes and evaluates an
approach to implement suitable optimization routines
within EnergyPlus in order to cost-effectively utilize
passive building thermal energy storage. However, the
developed optimization module could be applied to
better control any energy system within a building.

OVERVIEW OF ENERGYPLUS
In order to better understand the integration of
optimization routines, it is valuable to outline the basic
structure of EnergyPlus to calculate building cooling
and heating loads and simulate the operation of HVAC
systems and central plant equipment. Refer to DOE
(2002) for detailed information on EnergyPlus. Refer to
Appendix A for description of the basic structure and
building control strategies of EnergyPlus.

OPTIMIZATION ALGORITHMS
Numerous optimization techniques can be considered
for the implementation within EnergyPlus to carry out
cost or energy minimization. Each technique has its
advantages and disadvantages depending on the
building system to be controlled. In particular, only
selected optimization techniques are suitable for
controlling building passive or active thermal energy

Eighth International IBPSA Conference
Eindhoven, Netherlands

August 11-14, 2003

- 1467 -- 1475 -

storage (TES) systems due to several constraints
including:
1. The interactions between TES systems and other

building HVAC systems are rather complex. In
particular, no simple and differentiable relationship
can be generally established between TES control
variables (such as indoor air temperature setpoints
or charge/discharge levels) and building energy
consumption. Therefore, the optimization objective
function is not generally differentiable. Given this
characteristic, optimization techniques that require
as input parameters the derivatives of the objective
function are not suitable for TES optimization
problems.

2. Acceptable control variables for the optimization
of TES systems are within simple bounds such as
the upper/lower limits of storage levels for active
TES systems and upper/lower limits of zone air
temperatures for passive TES systems. Therefore,
suitable optimization algorithms have to account
for bound constraints in their search.
Unconstrained optimization approaches are
therefore not appropriate for TES optimization
problems.

3. The input/output formatting and the structure of
the optimization algorithms should be flexible
enough to be compatible with EnergyPlus. Most of
the commercially available optimization programs
cannot be easily implemented within EnergyPlus
because of their rigid structure. It should be noted
that commercially available optimization software
could be interfaced with EnergyPlus using an
external optimization approach such as GenOpt.

4. Given these constrains and the accessibility of
source codes, the optimization algorithms
considered for this study are based on the
following methods:

Nelder-Mead Simplex
Quasi-Newton as proposed by Broyden-
Fletcher-Golfarb-Shanno (BFGS)
Simulated Annealing
Population-Based Approach

A brief discussion of each optimization method as well
as their associated algorithms is provided in Appendix
B.

IMPLEMENTAION OF AN
OPTIMIZATION ALGORITHIN
WITHIN ENERGYPLUS v.1.01
Optimization Algorithm
As discussed in Section 3, several criteria should be
considered to select a suitable optimization algorithm
for implementation within EnergyPlus. For this study,
four optimization algorithms are implemented and
evaluated. The implementation procedure for all the
optimization algorithms is similar. To illustrate the
implementation procedure within EnergyPlus, an
algorithm using the Nelder-Mead simplex method is
considered in this section. The algorithm is extracted
from the ISML library and is called DBCPOL program.

ManageSimulation subroutine
As described in Section 3, HVAC systems in
EnergyPlus can be controlled by utilizing schedules.
Some modifications of internal subroutines are required
in order to implement an optimization algorithm within
EnergyPlus as discussed below.
First, subroutine ManageSimulation is modified to
separate the initialization tasks from the iterative
calculations. This separation is simply achieved by
code after the line “BeginFullSimFlag = True”,
indicating the completion of initialization, from the
subroutine ManageSimulation to another subroutine
EnvironSimulation where the environment loop
simulation starts.
Also, in order to keep the flexibility of running
EnergyPlus with and without the optimization module,
a new do-optimization-or-not field is added into section
Run Control in the input file to allow the user to select
the simulation type. If the input value for the do-
optimization-or-not field is ‘YES’, then the newly
created flag DoOptimization is set to “true” and
EnergyPlus with the integrated optimization algorithm
is used for the simulation. Otherwise, standard
EnergyPlus simulation is executed without any
optimization.
In subroutine ManageSimulation, instead of starting the
environment simulation directly by calling
EnvironSimulation, the simulation can be directed into
two newly added subroutines:
ManageNormalEnergyPlus or
ManageStdOptimEnergyPlus depending on the value of
the flag DoOptimization. If DoOptimization is ‘false’,
ManageNormalEnergyPlus is initiated by calling
directly EnvironSimulation. Otherwise,
ManageStdOptimEnergyPlus is initiated by first calling
another initialization subroutine,
ProcessOptimizationInput, to obtain input values

- 1468 -- 1476 -

needed by the optimization subroutine, BCPOL. Then,
the subroutine BCPOL is called within EnergyPlus to
start the optimization process. In this process, the
EnvironSimulation subroutine determines the objective
function. Using the BCPOL algorithm, several
iterations are typically required to determine the
optimal values of the control variables. For each
iteration, BCPOL updates the values of the control
variables and recalculates the objective function by
calling the EnvironSimulation subroutine (indirectly).
After BCPOL finds the optimal control variable values,
EnvironSimulation subroutine is called one more time
and the output values are reported.

Input Parameters for the Optimization
subroutine
The BCPOL algorithm requires eight input variables
and provides two output variables as described in
Section 4.1. These input and output variables are
defined in the module DataOptimization, a global data
module that can be accessed by other modules. The
defined variables are used by DBCPOL routine as
follows:

CALL DBCPOL (FCN, NumVariables, Guess,
IBTYPE, LowerLimit, UpperLimit, Tolerance,
MaxRunningNum, OptimumX, OptimumValue)

The values for the input variables are obtained by
calling subroutine ProcessOptimizationInput in file
ScheduleManager. In order for the BCPOL to know
which control variables need to be optimized, a new
section named Optimization:Schedule is created in the
input file, which has the format shown below.

OPTIMIZATION: SCHEDULE,
 A1, \field OptimizationScheduleName
 \Required-field
 \Type alpha
 A2, \field Guess Schedule
 \Required-field
 \Type object-list
 \Object-list ScheduleNames
 A3, \field Lower Limit Schedule
 \Required-field
 \Type object-list
 \Object-list ScheduleNames
 A4; \field Upper Limit Schedule
 \Required-field
 \Type object-list
 \Object-list ScheduleNames

Each control variable to be optimized should have a
corresponding Optimization:Schedule section in the
input file. Field A1 is the name of the control variable
schedule defined in the input file. Field A2 is the name
of the schedule that provides guess values of the
control variables. Fields A3 and A4 are the names of
the schedules that provide the lower and upper bounds
of the control variables, respectively. The construction
of this section corresponds to the
OptimizationScheduleData data type defined in a newly
added global data file DataOptimization. In the newly
added ProcessOptimizationInput subroutine, the
schedule indices of these schedules in the
Optimization:Schedule sections are stored in the array
OptimizationSchedule whose format is defined as data
type OptimizationScheduleData. Since EnergyPlus
already features routines that can retrieve the schedule
value by the schedule index, it is straightforward to
obtain values for all schedules defined in the
OptimizationSchedule array.
Hence, once the schedule names of the control
variables are read into OptimizationSchedule, it is easy
to get their values and store them in arrays that serve as
input for the BCPOL algorithm by using subroutines
such as GetScheduleIndex and
GetCurrentScheduleValue. Therefore, in subroutine
ProcessOptimizationInput, arrays for Guess,
LowerLimit, UpperLimit, OptimumX are allocated
according to the number of control variables that need
to be optimized, and the schedule values of these
control variables are stored in Guess, LowerLimit, and
UpperLimit sequentially. The remaining input
parameters for the BCPOL algorithm include
NumOfVariables, Tolerance, IBTYPE,
MaxRunningNum are also assigned values by calling
ProcessOptimizationInput.
Finally, other subroutines are added or modified within
EnergyPlus to complete the implementation of an
internal optimization module including:

BCPOL algorithm calls subroutine FCN to be
called by BCPOL to calculate the objective
function. This subroutine is located in the
SimulationManagerFile.
An economical module calculates the total
electrical utility costs including demand and
energy charges. The economical is located in the
EnvironSimulation.
A new section is added to allow more flexibility in
the selection of the objective function; the user can
choose between energy cost only, demand cost
only, or total cost. This section is processed in
ProcessOptimizationInput and the value is stored

- 1469 -- 1477 -

in a variable called OptimizationCost defined in
DataOptimization as shown below.

OPTIMIZATION:COST,
N1; \field Optimization Cost

 \Type choice
 \Key 1 !–energy cost based
 \Key 2 !–demand cost based
 \Key 3 !–total cost based

Output Variables
With standard EnergyPlus, the environment simulation
is run only once. However, EnergyPlus with an internal
optimization module requires several simulation
iterations to find the optimal solution. Without
changing reporting features, EnergyPlus would provide
lengthy output reports for all the simulation iterations.
To eliminate any intermediate and undesirable output
reports, a variable EndOptimizationFlag is defined In
DataOptimization. This variable is set to “false” until
the optimization is done. Only before the final
simulation run, EndOptimizationFlag is set to “true”.
The output reporting for the standard EnergyPlus (i.e.,
without the optimization module) is controlled solely
by DoOutputReporting variable. In the modified
EnergyPlus (i.e., with the optimization module), both
DoOutputReporting and EndOptimizationFlag
variables control the output reporting.

Thermal History
In order for algorithm BCPOL to efficiently call
subroutine EnvironSimulation to perform several
simulations, other modifications are introduced in
EnergyPlus related to the counting of environments and
to tracking the building’s thermal history:
EnvironSimulation uses subroutine
GetNextEnvironment to assess whether or not there is
another environment available for simulation. The
number of environments is counted from the input file
during initialization of EnergyPlus, i.e., before calling
EnvironSimulation using an internal counter. This
internal counter increases by one every time
GetNextEnvironment subroutine is called. In order for
BCPOL algorithm to call EnvironSimulation as many
times as needed, the environment counter in
GetNextEnvironment subroutine is reset after each
EnvironSimulation iteration.
When calling EnvironSimulation before the beginning
of any simulation, EnergyPlus executes a “warm-up”
period to initialize and determine the actual thermal
history for the building thermal zones and the HVAC
systems. This warm-up period is determined starting
from an arbitrary thermal history. Then, by repeatedly

running the first day of that environment until the
thermal history related variables converge, the warm-
up period is completed and the thermal history at the
start of the first timestep of that environment is found.
Then, based on this initial thermal history, the
simulation starts. Without modifying the warm-up
period input, the warm-up period always uses the same
input as the first day of that environment. With an
internal optimization module, this thermal history
setting in EnergyPlus is incorrect and has to be
modified. Indeed, the BCPOL algorithm changes values
for various control variables for a given environment
during each iteration. As a consequence, the warm-up
period and thermal history change according to the
control variable values set at each iteration. However,
the actual thermal history at the beginning of the
environment under investigation should not be changed
using future operation strategies but should only
depend on past operation conditions. Thus, instead of
using the characteristics of the “first day” of an
environment as input variables for the warm-up period,
the characteristics of “yesterday” should be used
instead. After the warm-up period is complete, the
thermal history at the start of the first timestep of the
environment should be recorded and should not be
changed later. The calculation of the objective function
values in each iteration of BCPOL should be based on
this same starting thermal history.
To be able to record the thermal history at the end of
the warm-up period and upload the thermal history at
the start of the actual simulation, variables that store
building and systems related thermal histories need to
be identified and subroutines that record and update
thermal history values are needed. Since in the released
EnergyPlus documents it is not revealed which
variables store thermal history, the identification of
these thermal history related variables was conducted
by trial-and-error. File ThermalHistoryManager is
added to EnergyPlus, which includes public
subroutines that record and update thermal histories,
i.e., RecHistoryValues and UpdateHistoryValues.
Since in EnergyPlus there is already a logical variable,
WarmUpFlag, marking the beginning and the end of
the warm-up period, it is easy to record the thermal
history after the warm-up period is completed and
upload recorded thermal history at the start of the first
timestep. Code recording and updating thermal
histories are added in the timestep loop of
EnvrionSimulation.
To ensure that the warm-up process is based on
“yesterday’s” weather data, subroutines in
WeatherManager are modified. Unlike other input
variables in EnergyPlus, weather data are read day-by-

- 1470 -- 1478 -

day instead of timestep-by-timestep. Before the
beginning of each day, the weather data are read into a
global variable Tomorrow by calling
ReadWeatherForDay subroutine. At the beginning of
that day, global variable Today is updated by
Tomorrow by calling UpdateWeatherForDay
subroutine. This process is accomplished in subroutine
InitializeWeather in WeatherManager. Both Today and
Tomorrow variables store weather data such as outside
dry bulb/dew point temperatures, pressure, solar
radiation, wind speed and direction. For standard
EnergyPlus, the warm-up period reads the weather
information of the first day of the environment.
EnergyPlus with an internal optimization module reads
instead weather data for the day before the first day of
the environment. Also, the date is changed to one day
before the first day so that the building schedules are
those of yesterday.

DISCUSSION SELECTED RESULTS
In this section, selected simulation results obtained
from EnergyPlus with an internal optimization module
are presented. The main focus of the analysis is to
determine the best control strategies that utilize passive
building thermal energy storage in a typical office
building in order to reduce electrical energy charges,
electrical demand charges, or total electricity charges.
First, a brief outline of the building model used
throughout the simulation analysis is provided. Then,
sample of optimization results for passive TES system
is illustrated. Finally, a comparative analysis of the
performance of optimization algorithms is presented.

Building Model
A 3-floor office building model is used to evaluate the
performance of various optimization algorithms within
EnergyPlus. Figure 1 shows an isometric view of the
office building.

Figure 1: Isometric view of the office building model

Each floor of the building is modeled with five zones,
i.e. east (24m x 12m), south (48m x 6m), west (24m x
12m), north (48m x 6m) and central zone (24m x 24 m).
The total building floor area is 5,184 m2. Two
construction types are considered in the analysis:
heavy-mass (643 kg/m2) and light-mass (183 kg/m2).
The building is occupied 8:00-19:00 and unoccupied
for the rest of the day. The average people density is set
at 0.08 person/m2 for all zones. The density load
attributed to both lighting and equipment is 31.25
W/m2. Two electrical utility rates, i.e. weak rates and
strong rates, are considered in the analysis. In weak
rates, the on-peak and off-peak energy costs are 0.2
$/KWH and 0.1 $/KWH respectively and demand costs
are 10 $/KW and 5$/KW respectively. In heavy rates,
the energy costs are 0.2 $/KWH and 0.05 $/KWH and
demand costs are 10 $/KW and zero $/KW respectively.
The simulation runs are performed either for Jan 17th or
for July 20th using weather data of Phoenix, AZ.

Sample of EnergyPlus based Optimization
Controls
Figure 2 shows sample results, obtained by EnergyPlus
with an internal optimization module, to better control
zone cooling setpoints in order to reduce total
electricity charges (using the strong-incentive utility
rate structure) for the 15-zone office building during
July 21 in Phoenix, AZ. EnergyPlus predictions for
zone cooling setpoints, average zone air temperatures,
as well as the chiller power consumption are illustrated
in Figure 3 for both conventional control (i.e., night set-
up control) and optimal control (using pre-cooling
strategies). In the simulation, a temperature economizer
is assumed for the operation of the HVAC systems.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour)

Te
m

pe
ra

tu
e

(C
)

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

El
ec

tri
ca

l E
ne

rg
y

(J
)

Average Indoor Air temp (C)
Average indoor air temp. (C) (Optimized)
Chiller Elec. (J)
Total Elec. (J)
Chiller Elec. (J) (Optimized)
Total Elec. (J) (Optimized)

Figure 2: Optimal control of passive building energy
thermal storage for the15-zone office building using

EnergyPlus
From Figure 2, it can be observed that the optimal
solution decides to precool the building during
nighttime. During the day, the cooled building structure
absorbs zone internal gains resulting in reduced cooling
load and chiller power consumption compared to the

- 1471 -- 1479 -

conventional control. For the optimal control, the total
chiller power consumption is 554 kWh with a peak of
56.7 kW occurring at 23:00. The building total
electrical consumption is 1582 kWh with a peak of
139.9 kW occurring at 8:00. Compared to the
conventional control, applying optimal control can
achieve total cost savings of 19.6% and a cooling cost
savings of 33.0%.

Comparative analysis of the optimization
algorithms
The performance of four optimization algorithms, i.e.
BCPOL, BCONF, SIMANL, and OptQuest is
compared for various operating and design conditions
including the effects of building mass, electrical utility
rate, and weather conditions. Table 1 lists selected the
results of the comparative analysis. Figure 3 illustrates
typical performance of the four optimization algorithms.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Hour)

Te
m

pe
ra

tu
re

 (C
)

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

4.50E+08

5.00E+08

El
ec

. E
ne

rg
y

(J
)

BCPOL - Air Temp. (C)

BCONF - Air Temp. (C)

Optquest - Air Temp (C)

SIMANL - Air Temp (C)

BCPOL-Chiller Elec (J)

BCONF - Chiller Elec (J)

Figure 3: Temperature and electricity consumption
profiles obtained using four optimization algorithms

integrated within EnergyPlus to better utilize building
thermal mass

From Figure 3, it can be observed that all of the
optimization algorithms provide rather non-smooth
solutions as indicated by the ragged profiles of the zone
air temperature and chiller energy use. It is most likely
that most of the optimization algorithms find local
optima instead of the global optimum due to the
complexity of the optimization problem.
As indicated in Table 1, SIMANL algorithm requires a
significant CPU time to search for the optimal solution.
Indeed, to find the optimal temperature setpoints,
SIMANL needed more than 50 hours and 31201
function evaluations. Although SIMANL achieved the
highest savings, the long simulation time makes it
unsuitable for most optimization problems.
Similarly, the OptQuest algorithm requires long CPU
times. In order to get acceptable optimal solutions,
approximately 5,000 iterations needed. The average
CPU time OptQuest required in this scenario is about 6
hours. Comparing the total cost savings summarized in

Table 1 and obtained by various optimization
algorithms, it can be observed that OptQuest achieves
0.5-7% higher savings than BCPOL and 0.7%-11.4%
more savings than BCONF. Although it may provide
better optimal solutions, OptQuest is not suitable for
real-time optimal control problems due to the large
computational efforts required.
Finally, the performance of BCPOL and BCONF
algorithms is comparable and both require similar CPU
times and iterations to find optimal solutions. On
average, BCPOL needs 1,053 of iterations and 1 hour
27 minutes of CPU time while BCONF requires 857
iterations and 57 minutes of CPU time. The differences
for the optimal objective function values between the
two algorithms are rather small (in the range 0.1-7%).
However, BCONF is not as robust as BCPOL due to
the fact gradients for the objective function are needed
by the quasi-Newton technique that BCONF utilizes to
search for the optimal solutions. Considering both
robustness and computational efficiency, it appears that
the BCPOL algorithm represents the best choice among
the four optimization algorithms considered in the
comparative analysis.

Comparison with an external optimization
module, GenOpt
GenOpt® is a generic optimization program developed
by the Simulation Research Group at the Lawrence
Berkeley National Laboratory. It can be applied to
optimize any arbitrary objective function that can be
estimated by an external simulation program such as
EnergyPlus. There are currently two optimization
methods integrated within GenOpt that the user can
select from. For fair comparison, the performance of
the Nelder-Mead simplex method of GenOpt is
evaluated against the BCPOL algorithm integrated
within EnergyPlus. Table 2 summarizes the
comparative analysis of the performance of both
GenOpt (externally connected to EnergyPlus) and
BCPOL (internally integrated within EnergyPlus) in
determining the best control strategy for passive
building storage utilization to minimize total electricity
costs for the 15-zone office building located in Phoenix
AZ, during July 21. Two electrical utility rate structures
(weak-incentive vs. strong-incentive) and tow
construction types (heavy vs. light) are considered in
the comparative analysis.
From Table 2, it can be noted that the Simplex method
of GenOpt tends to get easily trapped in local minima.
For the weak-incentive rate, it cannot find a solution
that is better than the base case, which is night set-back
control. This is due to the intentional reduction in the
number of iterations that the Nelder-Mead method is

- 1472 -- 1480 -

allowed to perform in GenOpt to search for the optimal
solution. This limit on the number of iterations is set to
reduce the CPU time for the search.
Further, it can be observed that although the Simplex
method in GenOpt requires fewer function evaluations
to get the “best solution”, it takes significantly longer in
terms of CPU time (on average 6 hours). This low
computational efficiency is due to two facts. First,
communication between GenOpt (an external
optimization module) and EnergyPlus occurs through
file transfer that requires more CPU time than that
needed by an optimization module integrated within
EnergyPlus. Second, due to the structure of GenOpt,
EnergyPlus is called at every iteration (of the search
process) with subsequent CPU time-consuming of
warm-up period and initialization of building energy
systems.
Based on the comparative analysis results, it is clear
that an internal optimization module performs better
than an external optimization module in cases when
high computational efficiency is required such as real-
time optimal control.

SUMMARY AND CONCLUSIONS
A description of the implementation of an optimization
algorithm within EnergyPlus is presented in this paper.
Several parametric analyses have been carried out
using EnergyPlus with an internal optimization module
to determine the best control strategies for passive
building thermal storage inventory in buildings. The
impact of the optimization technique is evaluated under
various operating and design conditions. Four
optimization techniques are considered in the
evaluation analysis including:

Nelder-Mead Simplex
Quasi-Newton as proposed by Broyden-Fletcher-
Golfarb-Shanno (BFGS)
Simulated Annealing
Population-Based Approach

Considering both robustness and computational
efficiency of the optimization routines, the BCPOL
algorithm using the Nelder-Mead simplex method was
found to be the best choice for the specific problem of
optimizing building passive TES systems. Comparing
external and internal implementations for the
optimization module, it was found that the internal
implementation provides significantly more efficient
option.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support of this
work through U.S. Department of Energy Cooperative
Agreement No. DE-FC26-01NT41255.

REFERENCES
Belegundu, A.D., Chandrupatla, T.R., 1999.
Optimization Concepts and Applications in
Engineering, Upper Saddle River, N.J., Prentice Hall.
Broyden, G., 1970. The Convergence of a Class of
Double-Rank Minimization Algorithms, Parts I and II,
Journal of the Institute of Mathematics and Its
Applications, Vol. 6, 76-90 and 222-231.
DOE, 2002. EnergyPlus Documentations and Manuals,
US Department of Energy, also refer to
http://www.eere.energy.gov/buildings/energy_tools/ene
rgyplus/.
Fletcher, R., 1970. A New Approach to Variable Metric
Algorithms, Computer Journal, Vol. 13, 317-322.
Glover, F., Laguna, M., 2000. Tabu Search, published
by Kluwer Academic Publishers.
Goldfrab, D., 1970, A Family of Variable Metric
Methods Derived by Variations Means, Mathematics of
Computation, Vol. 24, 23-26.
Nelder, J.A., Mead, R., 1965. A Simplex Method for
Function Minimization, Computer Journal, Vol. 7, 308.
Rao, S.S., 1996. Engineering Optimization: Theory and
Practice, Third Edition, John Wiley and Sons Inc.
Shanno, D.F., 1970. Conditioning of Quasi-Newton
Methods for Function Minimization, Mathematics of
Computation, Vol. 24, 647-656.
http://www.vni.com/products/imsl/docs/MATH.pdf,
page 958
http://www.vni.com/products/imsl/docs/MATH.pdf,
page 933
http://cxc.harvard.edu/ciao/ahelp/simul-ann-1.html
http://www.opttek.com/products/optquest_eng.html
http://simulationresearch.lbl.gov/GO/
http://simulationresearch.lbl.gov/GO/download/docume
ntation.pdf, page 25
Due to space constrains, appendices A and B are only
available in the electronic version of the paper.

- 1473 -- 1481 -

Table 1

Comparison of the performance of four optimization algorithms integrated within EnergyPlus.

NO Opt.
Costs Costs Savings # Iter. Time Costs Savings # Iter. Time Costs Savings # Iter. TimeCosts Savings # Iter. Time

Total Cost ($) 310.31 249.62 -19.6% 239.66 -22.8% 241.92 -22.0% 235.63 -24.1%
Cooling Cost ($) 183.64 122.95 -33.0% 112.98 -38.5% 115.25 -37.2% 108.96 -40.7%
Chiller Elec. Cost ($) 130.81 71.73 -45.2% 57.01 -56.4% 61.77 -52.8% 57.78 -55.8%
Total Cost ($) 369.38 378.23 2.4% 380.99 3.1% 352.77 -4.5%
Cooling Cost ($) 215.48 232.89 8.1% 235.64 9.4% 207.42 -3.7%
Chiller Elec. Cost ($) 152.29 147.22 -3.3% 145.18 -4.7% 134.65 -11.6%
Total Cost ($) 317.43 268.49 -15.4% 265.20 -16.5% 262.37 -17.3%
Cooling Cost ($) 190.75 141.82 -25.7% 138.52 -27.4% 135.69 -28.9%
Chiller Elec. Cost ($) 136.63 88.00 -35.6% 79.69 -41.7% 82.08 -39.9%
Total Cost ($) 376.24 364.46 -3.1% 366.11 -2.7% 359.93 -4.3%
Cooling Cost ($) 222.34 225.94 1.6% 229.47 3.2% 214.58 -3.5%
Chiller Elec. Cost ($) 157.82 143.39 -9.1% 146.65 -7.1% 142.20 -9.9%
Total Cost ($) 164.31 139.06 -15.4% 154.45 -6.0% 135.68 -17.4%
Cooling Cost ($) 37.64 12.39 -67.1% 27.77 -26.2% 9.00 -76.1%
Chiller Elec. Cost ($) 2.97 0.13 -95.6% 2.51 -15.5% 0.00 -100.0%
Total Cost ($) 196.59 181.11 -7.9% 190.75 -3.0% 178.45 -9.2%
Cooling Cost ($) 43.92 28.95 -34.1% 38.16 -13.1% 28.57 -34.9%
Chiller Elec. Cost ($) 2.97 3.21 8.1% 2.65 -10.8% 0.00 -100.0%
Total Cost ($) 166.47 140.35 -15.7% 144.23 -13.4% 139.63 -16.1%
Cooling Cost ($) 39.79 13.67 -65.6% 17.56 -55.9% 12.95 -67.5%
Chiller Elec. Cost ($) 4.40 0.02 -99.5% 0.31 -93.0% 0.00 -100.0%
Total Cost ($) 196.23 181.59 -7.5% 196.40 0.1% 180.17 -8.2%
Cooling Cost ($) 44.90 34.17 -23.9% 45.90 2.2% 32.08 -28.5%
Chiller Elec. Cost ($) 4.40 1.78 -59.5% 5.67 28.9% 0.68 -84.5%

31201 51:02

5:49

4:58

6:23

3:57

8:31

6:00

6:40

4:58

5000

5000

5000

5000

5000

5000

5000

5000

805

403

1:40

1:46

0:34

1:44

0:24

0:34

0:42

0:17

568

1156

417

648

1208

918

2:12

1:50

1:47

1:15

1:24

0:49

1:31

0:48

1214

834

954

1054

Light-
Strong-
Winter

Light-
Weak-
Winter

Light-
Strong-
Summer

Light-
Weak-

Summer

Heavy-
Strong-
Winter

Heavy-
Weak-
Winter

OptQuest SIMUAL

Heavy-
Strong-
Summer
Heavy-
Weak-

Summer

BCPOL BCONF

1317

927

1746

1112

Table 2
Comparison of Internal and External Optimization techniques

NO Opt.
Costs Costs Savings # Iter. Time Costs Savings # Iter. Time

Total Cost ($) 310.31 249.62 -19.6% 239.66 -22.8%
Cooling Cost ($) 183.64 122.95 -33.0% 112.99 -38.5%
Chiller Elec. Cost ($) 130.81 71.73 -45.2% 58.59 -55.2%
Total Cost ($) 369.38 378.23 2.4% 393.80 6.6%
Cooling Cost ($) 215.48 232.89 8.1% 256.61 19.1%
Chiller Elec. Cost ($) 152.29 147.22 -3.3% 149.96 -1.5%
Total Cost ($) 317.43 268.49 -15.4% 289.77 -8.7%
Cooling Cost ($) 190.75 141.82 -25.7% 172.10 -9.8%
Chiller Elec. Cost ($) 136.63 88.00 -35.6% 103.99 -23.9%
Total Cost ($) 376.24 364.46 -3.1% 385.06 2.3%
Cooling Cost ($) 222.34 225.94 1.6% 241.77 8.7%
Chiller Elec. Cost ($) 157.82 143.39 -9.1% 151.28 -4.1%

BCPOL

Heavy-
Strong-
Summer

1317 2:12

261 3:38

Heavy-
Weak-

Summer
927 1:50

Light-
Strong-
Summer

1214 1:47

GenOpt

466 6:25

580 7:36

466 6:48
Light-
Weak-

Summer
834 1:15

- 1474 -- 1482 -

Appendix A. Introduction of EnergyPlus
Basic Structure of EnergyPlus
EnergyPlus is constructed as “loop-in-loop” structure,
as illustrated in Figure A-1. When a simulation run is
initiated with EnergyPlus, the input file is first
processed and checked for consistency by calling the
subroutine ProcessInput. The input values are then
stored in global arrays that can be accessed easily by
subroutines that are designed to retrieve data from them.
Then follows the core line of EnergyPlus, i.e., calling
subroutine ManageSimulation in the
SimulationManager. Here, an initialization is first
carried out and then the “loop-in-loop” simulation is
performed.
After the initialization, EnergyPlus calculates from
outside to inside through an environment loop, a day
loop, an hour loop, and a timestep loop. The term
“environment” in EnergyPlus can be simply viewed as
a thermal history concatenated run period. A simulation
with one run period (for example, from July 20 to
November 20) has one environment. However, a
simulation with two run periods (for example, one run
period from July 20 to August 30 and another run
period from September 1 to December 5), has two
environments. By calling subroutine
GetNextEnvironment in the WeatherManager file, the
environment loop counts the environments to be
simulated and initializes the next available environment
to be simulated by the day loop. Each environment
contains one or more days. These days are simulated
sequentially in the day loop. In each day, 24 hours are
simulated from 1 to 24 in the hour loop. In each hour, a
timestep loop of up to six timesteps per hour (i.e., 10
minutes) is allowed. The calculation routines of
EnergyPlus are performed for each timestep. In
particular, building zone loads, HVAC system loads,
heating/cooling plant loads and eventually energy
consumption are calculated for each timestep.
In standard EnergyPlus, operating and setpoint
schedules are provided as fixed values and are not
modified during the simulation. In EnergyPlus with an
internal optimization module, schedules can be
modified by the optimization algorithm. Then, these
schedules are fed back to EnergyPlus calculation
routines to search for the optimal solution.

Building Control Strategies in EnergyPlus
EnergyPlus simulates the operation of HVAC systems
using a set of schedules. In the input file, week
schedules as well as day schedules are defined for the
control variables (such as temperature setpoints). For
simulations with timesteps less than one hour, hourly

values from the day schedules are used to interpolate
values for each timestep. At the start of the initial
timestep, subroutine ProcessScheduleInput is called.
This subroutine extracts information about all of the
schedules defined in the input file and stores them in a
global array, called Schedule. Then, subroutine
GetCurrentScheduleValue is called to determine the
schedule values at each timestep. An index for each
schedule is defined as the sequence number of that
schedule as stored in the Schedule array. Knowing the
name of the schedule, the schedule index number of a
schedule can be retrieved by calling subroutine
GetScheduleIndex. These schedule-handling
subroutines provide a convenient procedure to retrieve
schedule values for any timestep by simply knowing
the name of the schedule.

- 1482(a) -

 Figure A-1: EnergyPlus v1.01 flowchart

- 1482(b) -

Appendix B. Introduction of Optimization
Algorithms
Nelder-Mead Simplex Method
This method, developed by Nelder and Mead (1965), is
a multi-dimensional direct search optimization
technique that requires only objective functions
evaluations without derivatives. This characteristic of
the method makes it suitable for optimization for
controlling TES systems since it is computationally too
expensive to estimate derivatives of the objective
function using EnergyPlus program. An algorithm
using this method is available in the standard texts on
numerical recipes. A program based on the Nelder-
Mead simplex method, called BCPOL, is also provided
in the ISML library.

Quasi-Newton Method
The BFGS method, a popular variant of the Quasi-
Newton method, is an optimization method that
calculates gradients for the objective function (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970;
Rao, 1996). The BFGS method can handle optimization
problems subject to simple bounds on the variables
such as the problem of optimal controls of TES
systems. The main disadvantage with the BFGS
technique is may reach non-optimal solutions due to
inaccurate estimates of the objective function gradients.
An algorithm using the BFGS optimization technique,
called BCONF, is available in the ISML library.

Simulated Annealing
The simulated annealing method has been developed
using the analogy of how metals cool and anneal
(Belegundu and Chandrupalta, 1999). It can be a useful
optimization method when a desired global minimum
is among several other local minima. The primary
advantage of simulated annealing method is that it can
avoid undesirable local minima other techniques tend
to get stuck in. It often converges to a solution that is
close to the true minimum solution. The main
disadvantage of the simulated annealing method is that
it is a slow technique and requires substantial
computational time.

Population-Based Method
This meta-heuristic method is a type of genetic
algorithm, which harnesses the theory of natural
selection (i.e., “survival of the fittest”). The algorithm
used in the context of this article, called OptQuest and
developed by Glover and Laguna (2000), utilizes
“tabu” search and scatter search to solve non-smooth
optimization problems of up to 5,000 variables and
1,000 constraints. Compared to conventional genetic

algorithms, OptQuest makes greater use of strategic
choices and less use of randomization. Where classical
optimization methods keep track of a single “best
solution” during a search process, OptQuest maintains
a set of candidate solutions. Any member of the set can
lead to a new and better solution, possibly far away
from the “best solution” found at a given stage of the
search. Because of this feature, OptQuest is unlikely to
become “trapped” in a local optimal solution.

- 1482(c) -

